
COP 4710: Database Systems (Chapter 4) Page 1 © Mark Llewellyn

COP 4710: Database Systems

Fall 2009

Chapter 4 – Relational Query Languages – Part 1

School of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 823-2790

http://www.cs.ucf.edu/courses/cop4710/fall2009

COP 4710: Database Systems (Chapter 4) Page 2 © Mark Llewellyn

• A query language is a language in which a database user

requests information from the database.

– Most query languages are on a higher-level than standard programming

languages like C and Java. Query languages fall into a category of

languages known as 4GL.

• Query languages can be broadly categorized into two

groups: procedural languages and nonprocedural

languages.

– A procedural query language requires the user to specify a sequence of

operations on the db to compute the desired result. (User specifies how

and what.)

– A nonprocedural query language requires the user to describe the

desired result without needing to specify the sequence of operations

required to obtain the result. (User specifies only what.)

Query Languages

COP 4710: Database Systems (Chapter 4) Page 3 © Mark Llewellyn

• Most commercially available relational database systems

offer a query language which is categorized as a hybrid

query language.

• Hybrid query languages include elements of both the

procedural and nonprocedural approaches to query

languages.

• For the time being we are going to examine “pure”

relational query languages. These languages are terse

and formal and lack many of the syntactic elements

available in commercial languages, but they illustrate the

fundamental techniques utilized by all query languages

for extracting data from the database.

Query Languages (cont.)

COP 4710: Database Systems (Chapter 4) Page 4 © Mark Llewellyn

• As we examine these pure languages, bear in mind that,

although the pure languages do not contain such features,

a complete query language has facilities for inserting and

deleting tuples from relations as well as for modifying

existing tuples.

• Procedural language:

1. relational algebra

• Nonprocedural languages:

1. relational tuple calculus

2. relational domain calculus

Query Languages (cont.)

COP 4710: Database Systems (Chapter 4) Page 5 © Mark Llewellyn

• The relational algebra is a procedural query language. It consists of

set operations which are either unary or binary, meaning that either

one or two relations are operands to the set operations.

• Each of the set operations produces a relation as its output.

• There are five fundamental operations in the relational algebra and

several additional operations which are defined in terms of the five

fundamental operations.

• There is also a rename operation which is sometimes referred to as a

fundamental operation, we’ll save this one for a little while.

• The five fundamental operations are: select, project, union, set

difference, and Cartesian product. We will examine each operation

individually before combining operations into more powerful

expressions.

Relational Algebra

COP 4710: Database Systems (Chapter 4) Page 6 © Mark Llewellyn

• The five fundamental operations are: select, project,

union, set difference, and Cartesian product.

• There are several additional (redundant) operations that

have been defined in the relational algebra. The most

common of these include: intersection, natural join,

division, semi-join, and outer join.

• We will examine each operation individually before

combining operations into more powerful expressions.

Relational Algebra (cont.)

COP 4710: Database Systems (Chapter 4) Page 7 © Mark Llewellyn

• The select operation selects tuples from a relation instance which satisfy a
specified predicate.

• In general, a predicate, may contain any of the logical comparative
operators, which are =, , <, , , . Furthermore, several predicates may be
combined using the connectives and (), or (), and not ().

• The select operation may be thought of as providing a horizontal cross-
section of the operand relation.

Selection Operator

Type: unary

Symbol: Greek letter sigma, 

General form: (predicate)(relation instance)

Schema of result relation: same as operand relation

Size of result relation (tuples):  operand relation

Examples:

(major = “CS”)(students)

(major = “CS” and hair-color = “brown”)(students)

(hours-attempted > hours-earned)(students)

COP 4710: Database Systems (Chapter 4) Page 8 © Mark Llewellyn

Selection Operator Examples

A B C D

a a yes 1

b d no 7

c f yes 34

a d no 6

a c no 7

b b no 69

c a yes 24

d d yes 47

h d yes 34

e c no 26

a a yes 5

A B C D

a a yes 1

a d no 6

a c no 7

a a yes 5

r = (A = „a‟)(R)R

A B C D

a a yes 1

a a yes 5

r = (A = „a‟ ^ C = “yes”)(R)

A B C D

r = (B = „m‟)(R)

an empty

relation

COP 4710: Database Systems (Chapter 4) Page 9 © Mark Llewellyn

• The project operation can be viewed as producing a vertical cross-section of

the operand relation.

• If the operation produces duplicate tuples, these are typically removed from

the result relation in keeping with its set-like characteristics.

Projection Operator
Type: unary

Symbol: Greek letter pi, 

General form: (attribute-list)(relation instance)

Schema of result relation: specified by <attribute-list>

Size of result relation (tuples):  operand relation

Examples:

(student-id, name, major)(students)

(name, advisor)(students)

(name, gpa, hours-attempted)(students)

COP 4710: Database Systems (Chapter 4) Page 10 © Mark Llewellyn

Projection Operator Examples

A B C D

a a yes 1

b d no 7

c f yes 34

a d no 6

a c no 7

b b no 69

c a yes 24

d d yes 47

h d yes 34

e c no 26

a a yes 5

r = (A, C)(R)R

A C

a yes

b no

c yes

a no

d yes

h yes

e no

r = (A, D)(R)

A D

a 1

b 7

c 34

a 6

a 7

b 69

c 24

d 47

h 34

e 26

a 5

r = (C)(R)

C

yes

no

COP 4710: Database Systems (Chapter 4) Page 11 © Mark Llewellyn

• The union operation provides a means for extracting information
which resides in two operand relations which must be union
compatible. Union compatibility requires that two conditions hold:

1. Relations r(R) and s(S) in the expression r  s must be of the same degree
(arity). That is, they must have the same number of attributes.

2. The domains of the ith attribute of r(R) and the ith attributes of s(S) must
be the same, for all i.

Union Operator
Type: binary

Symbol: union symbol, 

General form: r  s, where r and s are union compatible

Schema of result relation: schema of operand relations

Size of result relation (tuples):  max{r+s}

Examples:

r  s (a, b)(r)  (a, b)(s)

COP 4710: Database Systems (Chapter 4) Page 12 © Mark Llewellyn

Union Operator Examples

A B D

a a 1

b d 7

c f 34

a d 6

a c 7

r = R  SR

X Y Z

a m 4

b c 22

a d 16

a c 7

S

E F G

a a 1

b d 7

c f 34

a d 6

a c 7

a m 4

b c 22

a d 16

A B

a a

b d

c f

a d

a c

T r = R  T

not valid – R and T are

not union compatible

A B

a a

b d

a c

X

A B

a a

b d

c f

a d

a c

r = T  X

COP 4710: Database Systems (Chapter 4) Page 13 © Mark Llewellyn

• The set difference operation allows for the extraction of information

contained in one relation that is not contained in a second relation.

• As with the union operation, the set difference operation requires that

the two operand relations be union compatible.

Set Difference Operator

Type: binary

Symbol: 

General form: r  s, where r and s are union compatible

Schema of result relation: schema of operand relation

Size of result relation (tuples): relation r

Examples: r  s

COP 4710: Database Systems (Chapter 4) Page 14 © Mark Llewellyn

Set Difference Operator Examples

A B D

a a 1

b d 7

c f 34

a d 6

a c 7

r = R  SR

X Y Z

a m 4

b c 22

a d 16

a c 7

S

E F G

a a 1

b d 7

c f 34

a d 6

A B

a a

b d

c f

a d

a c

T r = R  T

not valid – R and T are

not union compatible

A B

a a

b d

a c

X

A B

c f

a d

r = T  X

r = S  R

E F G

a m 4

b c 22

a d 16

r = X  T

A B

empty relation

COP 4710: Database Systems (Chapter 4) Page 15 © Mark Llewellyn

• The Cartesian product operation allows for the combining of any two relations
into a single relation.

• Recall that a relation is by definition a subset of a Cartesian product of a set of
domains, so this gives you some idea of the behavior of the Cartesian product
operation.

Cartesian Product Operator

Type: binary

Symbol: 

General form: r  s (no restrictions on r and s)

Schema of result relation: schema r  schema s with renaming

Size of result relation (tuples): >relation r and >relation s

Examples:

r  s

COP 4710: Database Systems (Chapter 4) Page 16 © Mark Llewellyn

Cartesian Product Operator Examples

A B

a a

b d

T

A B

a a

b d

a c

c a

X

r = T  X

T.A T.B X.A X.B

a a a a

a a b d

a a a c

a a c a

b d a a

b d b d

b d a c

b d c a

COP 4710: Database Systems (Chapter 4) Page 17 © Mark Llewellyn

Cartesian Product Operator Examples

A B C D

a a 1 yes

b d 7 yes

c f 34 no

R

X Y Z

a m 4

b c 22

a d 16

a c 7

S

r = R  S

A B C D X Y Z

a a 1 yes a m 4

a a 1 yes b c 22

a a 1 yes a d 16

a a 1 yes a c 7

b d 7 yes a m 4

b d 7 yes b c 22

b d 7 yes a d 16

b d 7 yes a c 7

c f 34 no a m 4

c f 34 no b c 22

c f 34 no a d 16

c f 34 no a c 7

COP 4710: Database Systems (Chapter 4) Page 18 © Mark Llewellyn

• While each of the five fundamental relational algebra

operators can be used individually to form a query, their

expressive power is tremendously enhanced when they

are combined together to form query expressions.

• Before we introduce the redundant operations in

relational algebra we’ll look at forming more complicated

combinations of the five fundamental operations. [This

will also make you appreciate the redundant operations

all the more.]

• To form meaningful queries we need to be able to pose

them against a database. For all of the examples that

follow, we’ll use the following database:

Relational Algebra Expressions

COP 4710: Database Systems (Chapter 4) Page 19 © Mark Llewellyn

Relational Algebra Expressions (cont.)

COP 4710: Database Systems (Chapter 4) Page 20 © Mark Llewellyn

• Using the techniques for converting an ERD into a set of relational
schemas we have the following resulting schemas:

S = STUDENTS(s#, name, age, major, gpa, hours_completed)

C = COURSES(c#, term, name, dept, enrollment)

P = PROFESSORS(p#, name, dept, yrs_teaching, area)

TA = TAKES(s#, c#, term, grade)

TE = TEACH(p#, c#, term)

• When you first begin to write queries in a new query language, it is
sometimes helpful to actually visualize the data that might be in one of
the operand (argument) relations upon which you are operating. To this
end, the last two pages of this set of notes provides an instance of each of
the relations above so that you can perform this visualization, however,
this is something that you will need to move away from as you get more
advanced in your query composition, because you do not want to
influence the design of your query by visualizing a relation instance that
may not contain all possible tuples that your query will encounter during
execution.

Relational Algebra Expressions (cont.)

COP 4710: Database Systems (Chapter 4) Page 21 © Mark Llewellyn

Example Query 1:

Find the names of all the students who are Computer Science majors.

Approach:

– First select all of the students who are CS majors.

– Next project only the name attribute from the previous result.

Complete Query Expression:

Relational Algebra Expressions (cont.)

r = (major = “Computer Science”)(S)

result = (name)(r)

result = (name)((major = “Computer Science”)(S))

COP 4710: Database Systems (Chapter 4) Page 22 © Mark Llewellyn

Example Query 2:

Find the student-num (s#) and name of all the students who have

completed more than 90 hours.

Approach:

– First select all of the students who have completed more than 90 hours.

– Next project the student-num and name attributes from the previous result.

Complete Query Expression:

Relational Algebra Expressions (cont.)

r = (hours_completed > 90)(S)

result = (s#, name)(r)

result = (s#, name)((hours_completed > 90)(S))

COP 4710: Database Systems (Chapter 4) Page 23 © Mark Llewellyn

Example Query 3:

Find the names of all those students who are less than 20 years old who
have completed more than 80 hours.

Approach:

– First select all of the students who have completed more than 80 hours and are less
than 20 years old.

– Next project the name attribute from the previous result.

Complete Query Expression:

Relational Algebra Expressions (cont.)

r = ((hours_completed > 80) AND (age < 20))(S)

result = (name)(r)

result = (name)(((hours_completed > 80) AND (age < 20))(S))

COP 4710: Database Systems (Chapter 4) Page 24 © Mark Llewellyn

Example Query 4:

Find the names of all the courses that are offered by either Computer

Science or Physics.

Approach:

– First select all of the courses that are offered by either CS or Physics.

– Next project the name attribute from the previous result.

Complete Query Expression:

Relational Algebra Expressions (cont.)

r = ((dept = Computer Science) or (dept = Physics))(C))

result = (name)(r)

result = (name)(((dept = Computer Science) or (dept = Physics))(C))

COP 4710: Database Systems (Chapter 4) Page 25 © Mark Llewellyn

Example Query 5:

Find the name of every professor who taught a course in the Fall 2008 term.

Approach:

– First put the professor information together with the course information.

– Next, select only related professors and courses from previous result.

– Finally, select only the students name from the previous result.

Complete Query Expression:

Relational Algebra Expressions (cont.)

result = (P.name)(((TE.term = Fall 2008) AND (P.p# = TE.p#))(P  TE))

COP 4710: Database Systems (Chapter 4) Page 26 © Mark Llewellyn

Example Query 6:

Find the names of all the students who took a course in the Fall 2008 term that

was taught by a professor who had more than 20 years of teaching experience.

Approach:

– First put the professor information together with the course information

together with the teaches information together with the takes information.

– Next, select only related students, professors and courses from previous

result.

– Finally, select only the students name from the previous result.

Complete Query Expression:

Relational Algebra Expressions (cont.)

result = (S.name)(((TA.term = Fall 2008) AND (P.yrs_teaching > 20) AND (S.s# = TA.s#) AND (P.p# = TE.p#)

AND (TA.c# = TE.c#) AND (TA.term = TE.term))(S  P  TA  TE))

COP 4710: Database Systems (Chapter 4) Page 27 © Mark Llewellyn

Example Query 7:

Find the names of all the professors who are either in the Computer Science

department or have more than 20 years of teaching experience.

Complete Query Expression:

or:

Relational Algebra Expressions (cont.)

result = [(name)((dept = Computer Science)(P))]  [(name)((yrs_teaching > 20)(P))]

result = (name)(((dept = Computer Science) OR (yrs_teaching > 20))(P))

COP 4710: Database Systems (Chapter 4) Page 28 © Mark Llewellyn

Example Query 8:

Find the student numbers for those students who were enrolled only in the Spring

2007 term.

Complete Query Expression:

Note: The following query expression is not correct for this query!!! Why?

Relational Algebra Expressions (cont.)

result = [(TA.s#)((TA.term = Spring 2007)(TA))]  [(TA.s#)((TA.term  Spring 2007))(TA))]

result =(TA.s#)((TA.term = Spring 2007))(TA))

COP 4710: Database Systems (Chapter 4) Page 29 © Mark Llewellyn

Sample Relation Instances: S relation

s# name
age

major gpa hrs_completed

S1 Michael Schumacher 19 Computer Science 4.00 45

S5 Jean Alesi 20 Physics 3.46 78

S3 Rubens Barrichello 21 Math 3.82 33

S2 Giancarlo Fisichella 18 Math 2.73 23

S4 Jarno Trulli 18 Computer Science 1.48 99

S7 Bernd Schneider 19 Computer Science 2.29 45

S6 Mika Hakkinen 20 English 2.37 33

COP 4710: Database Systems (Chapter 4) Page 30 © Mark Llewellyn

Sample Relation Instances: C relation

c# term name dept enrollment

C1 Fall 2008 CS1 CS 120

C1 Spring 2007 CS1 CS 100

C4 Fall 2007 Architecture CS 97

C3 Fall 2008 Database CS 86

C5 Spring 2008 Physics I Physics 135

C5 Fall 2008 Physics I Physics 125

C6 Summer 2007 Calculus III Math 67

COP 4710: Database Systems (Chapter 4) Page 31 © Mark Llewellyn

Sample Relation Instances: P relation

p# name dept yrs_teaching

P1 Wilson CS 5

P2 Davis Math 32

P3 deMoser CS 17

P4 Roberts Physics 14

COP 4710: Database Systems (Chapter 4) Page 32 © Mark Llewellyn

Sample Relation Instances: TA relation

s# c# term grade

S1 C3 Fall 08 A

S3 C4 Fall 07 B

S4 C6 Summer 06 C

S5 C5 Spring 08 D

S5 C1 Fall 08 A

S5 C3 Spring 07 C

S5 C6 Summer 07 C

S5 C4 Fall 07 A

S3 C5 Spring 06 C

S3 C1 Fall 08 A

S2 C4 Summer 07 D

COP 4710: Database Systems (Chapter 4) Page 33 © Mark Llewellyn

Sample Relation Instances: TE relation

p# c# term

P1 C3 Fall 2008

P3 C4 Fall 2007

P4 C6 Summer 2007

P2 C5 Spring 2006

P2 C1 Spring 2008

P1 C4 Fall 2005

P3 C1 Fall 2008

